1 What is the angular momentum quantum number (*l*) value for the 3*p* sublevel?

A 1

CORRECT: For the 3p sublevel, the principal quantum number (n) is 3 and the angular momentum quantum number (l) is 1.

B 2

INCORRECT: This is the value of l for the 3d sublevel.

C 3

INCORRECT: For n = 3, the possible l values are 0, 1, and 2.

D 4

INCORRECT: For n = 3, the possible l values are 0, 1, and 2.

ICC Essential Concept:

 $Structure \ of \ Atoms$

ICC Underlying Skill:

Atomic Structure

2 Which of the following is the conjugate base of H_2SO_4 ?

A OH-

INCORRECT: OH^- is the conjugate base of H_2O .

B HSO₃

INCORRECT: HSO_3^- is the conjugate base of H_2SO_3 .

 \mathbf{C} HSO₄⁻

CORRECT: A conjugate base is formed when an acid donates a proton. Because it has room to accept a proton, it is now called a base. When H_2SO_4 donates a proton, its conjugate base is HSO_4^- is formed.

D $\overline{\mathrm{SO}_4^{2-}}$

INCORRECT: SO_4^{2-} is the conjugate base of HSO_4^- .

ICC Essential Concept:

Chemical Reactions

ICC Underlying Skill:

Acids and Bases

- **3** Which of the following covalent single bonds is the most polar based on the electronegativity trends in the periodic table?
 - A C-F

CORRECT: The greater the electronegativity difference between the bonding atoms the more polar the bond. Electronegativity generally increases left to right across a period and decreases down a group in the periodic table. The C–F bond is the most polar.

В С–О

INCORRECT: Electronegativity generally increases left to right across a period and decreases down a group in the periodic table.

C-N

INCORRECT: Electronegativity generally increases left to right across a period and decreases down a group in the periodic table.

 $D \overline{C-S}$

INCORRECT: Electronegativity generally increases left to right across a period and decreases down a group in the periodic table.

ICC Essential Concept:

Structure and Properties of Matter

ICC Underlying Skill:

Periodic Properties

4 Which of the following covalent single bonds is the shortest based on the atomic radius trends in the periodic table?

A C-F

CORRECT: The smaller the atomic radii of the bonding atoms the shorter the bond. Atomic radius generally decreases left to right across a period and increases down a group in the periodic table. The C–F bond is the shortest.

В С-О

INCORRECT: Atomic radius generally decreases left to right across a period and increases down a group in the periodic table.

C-N

INCORRECT: Atomic radius generally decreases left to right across a period and increases down a group in the periodic table.

D C-S

INCORRECT: Atomic radius generally decreases left to right across a period and increases down a group in the periodic table.

ICC Essential Concept:

Structure and Properties of Matter

ICC Underlying Skill:

Periodic Properties

5 Which of the following molecules contains an odd total number of electrons?

A BeH_2

INCORRECT: The total number of electrons in a BeH_2 molecule is 6, 4 from the Be atom and 1 from each H atom.

B NO_2

CORRECT: The total number of electrons in a $\rm NO_2$ molecule is 23, 7 from the N atom and 8 from each O atom.

 $\mathbf{C} \quad \overline{\mathrm{SF}_6}$

INCORRECT: The total number of electrons in a SF_6 molecule is 70, 16 from the S atom and 9 from each F atom.

D $\overline{\text{PCl}_3}$

INCORRECT: The total number of electrons in a PCl_3 molecule is 66, 15 from the P atom and 17 from each Cl atom.

ICC Essential Concept:

Structure and Properties of Matter

ICC Underlying Skill:

Covalent Bonding

- 6 A scientist measured the freezing and boiling points of each of two water samples, a sea water sample and a pure water sample, at 1 atm. Which of the following did the scientist most likely observe? Compared to the pure water sample, the sea water sample had:
 - **A** the same freezing point and the same boiling point.

INCORRECT: Solutions, especially those of electrolytes, have a higher boiling point and a lower freezing point than does the pure solvent. Sea water is an aqueous electrolyte solution.

B a lower freezing point and a higher boiling point.

CORRECT: Solutions, especially those of electrolytes, have a higher boiling point and a lower freezing point than does the pure solvent. Sea water is an aqueous electrolyte solution.

C a lower freezing point and a lower boiling point.

INCORRECT: Solutions, especially those of electrolytes, have a higher boiling point and a lower freezing point than does the pure solvent. Sea water is an aqueous electrolyte solution.

D a higher freezing point and a lower boiling point.

INCORRECT: Solutions, especially those of electrolytes, have a higher boiling point and a lower freezing point than does the pure solvent. Sea water is an aqueous electrolyte solution.

ICC Essential Concept:

Structure and Properties of Matter

ICC Underlying Skill:

Nature and Phases of Matter—Characteristics and Behavior

7 The percentage composition of ferric oxide, Fe₂O₃, is closest to:

A 70% Fe and 30% O.

CORRECT: The formula mass of Fe_2O_3 is 159.7 amu of which 111.7 amu is contributed by Fe and 48.0 amu is contributed by O. Dividing 111.7 amu by 159.7 amu and then multiplying by 100% gives about 70%. Dividing 48.0 amu by 159.7 amu and then multiplying by 100% gives about 30%.

B 75% Fe and 25% O.

INCORRECT: Given the atomic masses of Fe and O and the formula of the compound, the percentage composition of Fe_2O_3 is closest to 70% Fe and 30% O.

C 80% Fe and 20% O.

INCORRECT: Given the atomic masses of Fe and O and the formula of the compound, the percentage composition of Fe_2O_3 is closest to 70% Fe and 30% O.

D 85% Fe and 15% O.

INCORRECT: Given the atomic masses of Fe and O and the formula of the compound, the percentage composition of Fe_2O_3 is closest to 70% Fe and 30% O.

ICC Essential Concept:

Structure and Properties of Matter

ICC Underlying Skill:

Ionic Bonding

8 Which of the following is a common feature of all free radicals? They all:

A have an unpaired electron.

CORRECT: All free radicals, by definition, have one or more unpaired electrons. It is this characteristic that typically makes free radicals highly reactive.

B are neutral atoms.

INCORRECT: Free radicals can be molecular species and can have a positive or negative charge.

C are molecular species.

INCORRECT: Free radicals can be atomic species.

D are charged species.

INCORRECT: Free radicals can have a zero charge.

ICC Essential Concept:

Chemical Reactions

ICC Underlying Skill:

Common Reactions in Living Systems

9 What percent of a sample of a radioactive isotope will be left after two half-lives?

A 0.00%.

INCORRECT: After two half-lives, more than 0.00% of a sample of a radioactive isotope will be left.

B 12.5%

INCORRECT: After three half-lives, 12.5% of a sample of a radioactive isotope will be left.

C 25.0%

CORRECT: After two half-lives, 25.0% of a sample of a radioactive isotope will be left.

D 50.0%

INCORRECT: After one half-life, 50.0% of a sample of a radioactive isotope will be left.

ICC Essential Concept:

Structure of Atoms

ICC Underlying Skill:

Isotopes

- **10** A positive entropy change (ΔS) is associated with which, if either, of the phase-change processes melting and condensation?
 - **A** Melting only

CORRECT: When a substance melts, it changes from a solid to a liquid and disorder increases. This results in a positive entropy change (ΔS).

B Condensation only

INCORRECT: When a substance condenses, it changes from a gas to a liquid and disorder decreases. This results in a negative entropy change (ΔS).

 ${\bm C} \quad {\rm Melting \ as \ well \ as \ condensation}$

INCORRECT: A positive entropy change (ΔS) is associated with melting but not with condensation.

D Neither melting nor condensation

INCORRECT: A positive entropy change (ΔS) is associated with melting.

ICC Essential Concept:

Conservation of Energy and Increase in Disorder

ICC Underlying Skill:

Conservation of Energy

11 Consider the chemical reaction

 $2\text{KClO}_3(s) \rightarrow 2\text{KCl}(s) + 3\text{O}_2(g)$

Which of the following is equal to the mass of $KClO_3$ that is needed to produce 32.0 g of O_2 ?

A 40.8 g

INCORRECT: The mass of KClO_3 needed to produce 32.0 g of O_2 is 81.7 g given that the molar mass of O_2 is 32.0 g/mol, the molar mass of KClO_3 is 122.5 g/mol, and the mole ratio is 2 mol of KClO_3 to 3 mol of O_2 .

B 81.7 g

CORRECT: The mass of KClO₃ needed to produce 32.0 g of O₂ is 81.7 g given that the molar mass of O₂ is 32.0 g/mol, the molar mass of KClO₃ is 122.5 g/mol, and the mole ratio is 2 mol of KClO₃ to 3 mol of O₂.

C 244 g

INCORRECT: The mass of KClO₃ needed to produce 32.0 g of O_2 is 81.7 g given that the molar mass of O_2 is 32.0 g/mol, the molar mass of KClO₃ is 122.5 g/mol, and the mole ratio is 2 mol of KClO₃ to 3 mol of O_2 .

D 734 g

INCORRECT: The mass of KClO₃ needed to produce 32.0 g of O_2 is 81.7 g given that the molar mass of O_2 is 32.0 g/mol, the molar mass of KClO₃ is 122.5 g/mol, and the mole ratio is 2 mol of KClO₃ to 3 mol of O_2 .

ICC Essential Concept:

Chemical Reactions

ICC Underlying Skill:

Conservation of Matter

12 Which of the following chemical reactions is best classified as an acid-base reaction?

 $\textbf{A} \quad 2 \mathrm{HgO}(s) \rightarrow 2 \mathrm{Hg}(l) + \mathrm{O}_2(g)$

INCORRECT: The breakdown of mercury(II) oxide into mercury metal and oxygen is a decomposition reaction.

 $\label{eq:balance} \begin{array}{l} \textbf{B} & \overline{\mathrm{Na}_{2}\mathrm{SO}_{4}(aq) + \mathrm{BaCl}_{2}(aq)} \rightarrow \\ & \mathrm{BaSO}_{4}(s) + 2\mathrm{NaCl}(aq) \end{array}$

INCORRECT: The precipitation reaction between sodium sulfate and barium chloride to form barium sulfate and sodium chloride is a double-displacement reaction..

C $Zn(s) + 2AgNO_3(aq) \rightarrow Zn(NO_3)_2(aq) + 2Ag(s)$

INCORRECT: The redox reaction between zinc metal and silver nitrate to form zinc nitrate and silver metal is a singledisplacement reaction.

 $\begin{array}{ll} \mathsf{D} \quad \mathrm{CH}_3\mathrm{COOH}(aq) + \mathrm{KOH}(aq) \rightarrow \\ \mathrm{H}_2\mathrm{O}(l) + \mathrm{CH}_3\mathrm{COOK}(aq) \end{array}$

CORRECT: Acetic acid and potassium hydroxide react to form water and potassium acetate in this acid-base neutralization reaction.

ICC Essential Concept:

Chemical Reactions

ICC Underlying Skill:

Acids and Bases

- 13 The specific heat capacity (commonly known as specific heat) of copper is 0.0925 cal/(g·°C). If a 15.0-g sample of copper is heated from 20.0°C to 350.0°C, the heat absorbed by the sample will be equal to which of the following?
 - **A** 330. cal

INCORRECT: ΔT is 330.0°C, q will not be 330. cal.

B 458 cal

CORRECT: Given the equation $q = mc\Delta T$, where *m* is 15.0 g, *c* is 0.0925 cal/(g·°C), and ΔT is 330.0°C, *q* will be 458 cal.

C $\overline{4.95 \times 10^3}$ cal

INCORRECT: Multiplying 15.0 g by 330.0°C gives 4.95×10^3 g·°C.

D 5.35×10^4 cal

INCORRECT: Multiplying 15.0 g by 330.0°C and then dividing by 0.0925 cal/(g·°C) gives $5.35 \times 10^4 \text{ g}^2 \cdot ^{\circ}\text{C}^2$ /cal.

ICC Essential Concept:

Structure and Properties of Matter

ICC Underlying Skill:

Factors Affecting Atomic Interactions

14 Consider the chemical equation shown in which the lowercase letters represent the coefficients of the reactants and products.

 $wC_2H_6 + xO_2 \rightarrow yCO_2 + zH_2O$

When the equation is correctly balanced, what will be the sum of these coefficients (w + x + y + z)?

A 4

INCORRECT: When the equation is balanced correctly, w = 2, x = 7, y = 4, and z = 6. Thus, w + x + y + z will be equal to 19.

B 13

INCORRECT: When the equation is balanced correctly, w = 2, x = 7, y = 4, and z = 6. Thus, w + x + y + z will be equal to 19.

C 17

INCORRECT: When the equation is balanced correctly, w = 2, x = 7, y = 4, and z = 6. Thus, w + x + y + z will be equal to 19.

D 19

CORRECT: When the equation is balanced correctly, w = 2, x = 7, y = 4, and z = 6. Thus, w + x + y + z will be equal to 19.

ICC Essential Concept:

Chemical Reactions

ICC Underlying Skill:

Conservation of Matter

- **15** An atom of an isotope contains 81 protons, 81 electrons, and 124 neutrons. What is the mass number of the isotope?
 - **A** 124

INCORRECT: The number of neutrons is 124.

B 162

INCORRECT: The sum of the number of protons and the number of electrons is 162.

C 205

CORRECT: The mass number is equal to the sum of the number of protons and the number of neutrons. The mass number is 205.

D 286

INCORRECT: The sum of the number of protons, the number of electrons, and the number of neutrons is 286.

ICC Essential Concept:

Structure of Atoms

ICC Underlying Skill:

Isotopes